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ABSTRACT

In the Stanford Radio Acoustic Sounding System (RASS), an electro-
magnetic signal is made to scatter from a moving acoustic pulse train.
Under a Bragg-scatter condition, maximum electromagnetic scattering

occurs. The scattered radio signal contains temperature and wind

information as a function of the acoustic pulse position.

In the theoretical work on RASS to date, the effects of such
atmospheric parameters as turbulence, humidity, mean temperature, and
mean wind fields on the propagating acoustic pulse train have been
ignored. By neglecting these parameters, the quantitative analyses
have assumed that the acoustic wavefronts act as large perfect spherical
reflectors. In this investigation, RASS performance is assessed in a
; real atmosphere where "coherency" of the acoustic pulse is degraded as

it propagates vertically into the lower atmosphere. The only assumption

made is that the electromagnetic wave is not affected by stochastic
perturbations in the atmosphere.

Coherency of vertical acoustic-wave propagation is described

through a perturbation-theoretic method and Feynman's diagrammatic
technique. One of the most important attributes of this analysis is
that it systematically and explicitly accounts for multiple scattering
of acoustic waves in the presence of atmospheric fluctuations. The
coherency results are then used to evaluate the strength of the scat- !

tered electromagnetic signal from the acoustic pulse train while taking

into account the presence of turbulence, mean temperature gradients,

and mean wind fields.

It is concluded that, for acoustic pulses with carrier frequencies

below a few kilohertz propagating under typical atmospheric conditions,
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turbulence has little effect on the strength of the received radio
signal at heights up to a few kilometers. This result implies that
focusing of RF energy by the acoustic wavefronts is primarily a function
of sound intensity which decreases as x'z, where x denotes altitude.
The effect of mean vertical wind and mean temperature on the
strength of the received signal is also demonstrated to be insignifi-

cant. Mean horizontal winds, however, shift the focus of the reflected

electromagnetic energy from its origin, resulting in a decrease in
received signal level when a monostatic RF system is used. For a
bistatic radar configuration with space-diversified receiving antennas,
the shifting of the acoustic pulse makes possible the remote measure-

ment of the horizontal wind component.
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SYMBOLS

Symbols most often used in the text are defined below; others are

defined as they occur.

ag ,,,,,,,,,, temperature gradient in lower troposphere

AT e T P U proportionality constant measuring outer scale
of turbulence

Ar ,,,,,,,,,, effective area of receiving antenna

B o Tt R L proportionality constant measuring inner scale
of turbulence

Bp(F.F') ....... covariance of random field p(¥)

BEBE o % i e i velocity of sound

o e reference velocity cf sound

cp .......... specific heat of air at censtant pressure

Cov o9 e o v dlim s specific heat of air at constant volume

Cf ,,,,,,,,,, Fresnel cosine integral

Cz(x) ......... refractive-index structure parameter of random

P field p(r) at altitude x

Cgo ......... reference value of refractive-index structure
parameter at altitude Xq

L S R R B g imaginary part of complex acoustic wave number h

ey @ »on 8 % e s d diameter of scattering volume for electromag-

netic energy

dt .......... total derivative with respect to time, d/dt

- (p P e R two-dimensional Fourier-Stieltjes measure of log-

° amplitude of a scattered sound wave
dv(x,E&) ....... two-dimensional Fourier-Stieltjes measure of

acoustic refractive index




dD(X,“ ’) .
do(xa‘(u) -
dy(xse ) .
Dp’f,F') £
P

E(r)
£ (F)

£,(0).E,

two-dimensional Fourier-Stieltjes measure of
acoustic pressure

two-dimensional Fourier-Stieltjes measure of
phase of scattered sound wave

two-dimensional Fourier-Stieltjes measure of
log-amplitude and phase of scattered sound wave

structure function of random field p(r)

Dyson's operator

shear strain tensor

electric field component

electric field in free space

scattered electromagnetic signal, collected at
receiver

acoustic frequency
electromagnetic frequency

complex conjugate of F

magnitude of complex number F

two-dimensional spectral density of random field
p(r) in a medium with smoothly varying mean

characteristics

E(xax.) two-dimensional spectral density of random field

: p(r) in the plane x = constant

FXS(x,r1) two-dimensional log-amplitude phase spectra ot
scattered acoustic wave

GaS maximum gain of acoustic source

Ga(F,O) Green's function for acoustic-wave propagation
in the presence of turbulence

G:(r,0) varying part of Ga(F,O)

Gao(F,F') free-space Green's function for acoustic-wave
propagation
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LO(X)
£ (x)

Tn(x)

-------

.........

------

maximum gain of electromagnetic receiver antenna

maximum gain of electromagnetic transmitter
antenna

complex acoustic wave number
magnetic field component

entropy of air

/-1

imaginary part of complex number F

identity operator

intensity ooerator

Bessel function of first kind and zeroth order
real part of complex acoustic wave number h
electromagnetic wave number

a constant indicating a measure of sound
velocity

a constant indicating a measure of the varying
part of electromagnetic refractive index

inner scale of turbulence at height x

1o (x)/(2n)

natural logarithm

outer scale of turbulence at height x
L, (x)/(2m)

linear stochastic differential operator

varying part of linear stochastic differential
opberator




g = B IR S

factor determining the refractive-index struc-
ture parameter in the presence of inhomogeneou
turbulence

coherence function for two points r' and r"
mass operator

acoustic refractive index

fluctuating component of acoustic refractive
index

electromagnetic refractive index

varying part of electromagnetic refractive inde-
number of cycles in acoustic pulse

external acoustic pressure

reference pressure

total pressure in the fluid

acoustic radiated power

ensemble average operator (Pav = <:-:>)

fluid stress sensor

power collected by electromagnetic receiver

asymptotic value of power collected by electro-
magnetic receiver in presence of constant hori-
zontal winds

power radiated by electromagnetic transmitter

magnitude of vector r; |r|
(x;y,2) = (x,y ) where y = (y,z)

upper edge of acoustic pulse

Tower edge of acoustic pulse




.......

..........

......

-------

..........

........

.......

.........

real part of complex number F

gas constant

perturbed phase of acoustic wave

unperturbed phase of acoustic wave

perturbation in phase of acoustic wave
S1(r) = (5(r) - §,(V))

Fresnel sine integral

time variable

total momentum flux tensor

temperature of atmosphere

reference temperature of the medium
fluid-velocity caused by sound waves

spatial variation of external acoustic pressure
p,(r)
a

ua(?) in absence of turbuience

scattering volume for electromagnetic wave
volume density of air

total fluid-velocity component

upper-half infinite space

magnitude of horizontal wind velocity

atmospheric fluid velocity in absence of sound

altitude

coherence length of acoustic-wave propagation

incoherence length of acoustic-wave propagation




Afav(x)

AT(x)

Ae(r)

.....

(y,2)

Heaviside step function

ratio of specific heats for air
gamma function

dimensionless parameter
dimensionless dummy parameter

Kronecker delta

Dirac delta measure

doppler shift in received electromagnetic signal
scattered from traveling acoustic pulse at
altitude «x

averaged doppler shift

error in temperature measured at altitude «x

deviation of permittivity of the medium from its
free-space value

permittivity of the medium

free-space permittivity
intrinsic impedance of free space

smaller of acoustic or radar beamwidths

half-power beamwidth of acoustic source

half-power beamwidth of electromagnetic trans-
mitter and receiver

XX




G R spatial-frequency vector (xx,xy,zz)

Ky @ n e (Ky,KZ)

Aa .......... acoustic wavelength

Ao v vm e electromagnetic wavelength

xv .......... volume viscosity

By o mim s aim ooae free-space permeability

By @ o r e e e e e e shear viscosity

1 e S density of air

AT BT static density of air

©(r) . . . ... ... fractional variation of temperature from its
reference

B el e et Sk three-dimensional spectral expansion of random

P field p(r)

NE T ey s ey i 1A perturbation in log amplitude of scattered
sound wave

U S R T complex phase in the Rytov transformation

wo(F) ....... . unperturbed value of complex phase of the acous-
tic wave

w](r) ........ first-order perturbation of complex phase of the
acoustic wave

Wy v v e angular frequency of acoustic wave (wa = ana)

Wy v v e e angular frequency of electromagnetic wave

(we = wae)
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e e e S partial derivative with respect to space vari-

i =
able X3 (8i = a/axi)
at .......... partial derivative with respect to time
(3, = 9/0t)
t
U S e Lo v A gradient operator
Wil e divergent operator
5 T e T B curl operator
V2 .......... Laplacian operator
<:-:> ........ ensemble average operator (<:-:> = Pav)
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Chapter 1
INTRODUCTION

During the past few years, a Radio-Acoustic-Sounding-System (RASS)
has been developed for real-time temperature profiling the first few
kilometers of the lower troposphere [Marshall, 1972]. The basic physics
of the RASS is as follows.

The electromagnetic refractive index of air (above 30 MHz) in the
lower troposphere is not exactly unity but is a function of pressure,
temperature, and humidity [Bean and Dutton, 1968]. Because of its
pressure dependence, this refractive index can be altered by a short
pulse of sound from an acoustic source. An electromagnetic RF signal
generated by a radar passes through the sound pulse and is scattered as
a result of the induced refractive-index variations. The scattered RF

signal is collected by a receiver and is processed to determine atmo-

spheric temperature as a function of the acoustic-pulse position (range).

In a static atmosphere, the received signal is maximized when a Bragg
condition is established between the acoustic and electromagnetic sig-
nals. This occurs if the electromagnetic wavelength is twice the
acoustic wavelength and results in an in-phase addition at the receiver
of the electromagnetic signal scattered from successive acoustic wave-
fronts in the pulse.

A doppler radar measures the speed of the sound pulse. Because the
speed of sound in air depends on its temperature, the temperature pro-
file of the lower atmosphere can be obtained with the RASS [Frankel and
Peterson, 1976]. Fig. 1 illustrates the geometry of a bistatic RASS

wherein the acoustic source is located between separated RF transmit and

i b e st
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Fig. 1. REFLECTION OF ELECTROMAGNETIC
ENERGY FROM AN ACOUSTIC PULSE FOR A
RASS BISTATIC GEOMETRY.

receive antennas. In a monostatic RASS, the antennas and acoustic source

are located at the same point.

In an eariy study at Stanford University , the reflection of electro-
magnetic energy from an acoustic pulse propagating vertically into the
Tower atmosphere was analyzed at a carrier frequency of 85 Hz [Marshall,
1972]. In that study Marshall assumed a static atmosphere ( no turbu-
Tence and winds ), and he made no attempt to determine the feasibility
of operating the RASS at acoustic frequencies higher than 85 Hz which
offers the advantage of a smaller system and an increase in the resolu-
tion of the measured atmospheric parameters.

In contrast to Marshall's analysis, this investigation considers

the interaction of electromagnetic and acoustic waves when the RASS




is operated in a stochastic environment characterized by turbulence,
winds, and mean-temperature gradients. These atmospheric parameters are
important when evaluating RASS performance because they could affect
the spatial coherency in and between the acoustic wavefronts of the
transmitted acoustic pulse. This decrease in coherency would reduce the
received signal levels.

An analysis of the effects of turbulence on the coherency of the
acoustic wave shows that the acoustic wave amplitude at an altitude x is
damped by a factor exp[- <|¢](x,ya)12>/z] because of complex-phase
intereference. In this damping factor,‘ﬁ(x,jx) is the first-order pertur-
bation in the complex phase of the acoustic wave due to turbulence. As
shown herein , these complex-phase perturbations of the acoustic wave
are small in the lower troposphere; consequently , for acoustic pulses
with carrier frequencies below a few kilohertz propagating (under typical
atmospheric conditions) to altitudes of a few kilometers, turbulence
has little effect on the strength of the received radio signal. More
particularly, it is shown in Chapter IV, that for an altitude x of the
acoustic pulse much less than the coherence length of propagation Xeo
the effect of turbulence on RASS performance is insignificant. This

coherence length of propagation derived in this investigation is given by

54.8 (1.833 - m_) [&/(11-6 m,)

Ko = (1.1)
C 2 2 ,5/3 /M3
cno ka A *o

In the above equation m is a factor determining the acoustic
refractive-index structure parameter in the presence of inhomogeneous
turbulence, Cﬁo is the refractive-index structure parameter at altitude
X ka is the aco&stic wave number, and A is a proportionality constant

3




measuring the outer scale of turbulence. It is observed that the coheren-

ce length varies inversely with frequency and the strength of the turbu-
lence. As an example of the application of Eq. (1.1),consider a RASS
operating at an acoustic frequency of fa = 2 kHz and assuming the follo-
wing typical values for the parameters in the equation ; Cgo - 10'6 m'2/3,
R = Tm, A=2, m, = 1.33,and the velocity of sound 6" 340 m/sec,

the coherence length is found to be K = 4 x 107 m. This value of cohe-
rence length implies that the coherency of an acoustic wave is not
affected by turbulence when fa= 2 kHz and x<< 4 x ]07m.

Quiescent atmospheric conditions such as temperature gradients
cause the dispersion of acoustic wavetrain. Under these circumstances, a
match between electromagnetic and acoustic waves can be obtained by the
use of a modified Bragg-scatter condition. This match depends on the
temperature difference over the length of the acoustic wavetrain. This
study shows, however, that typical temperature gradients in the lower
atmosphere, which are on the order of - 6.5°K/km , have a negligible
effect on the received power of a RASS. The effect of vertical winds
on the strength of the received radio signal can be overcome
similarly.

This investigation also shows that mean horizontal winds shift the
focus of reflected electromagnetic energy from its origin, resulting in a
decrease in received signal level when a monostatic RF system is used.
Because the acoustic wavefronts act as large spherical reflectors, the
principle of specular reflection , however, can be utilized in a bistatic
radar geometry to remotely measure this wind component ( in addition to

atmospheric temperature profiles ).In this RASS configuration, the radar

antennas and acoustic sources are aligned in the wind direction -- the

, , — ,,,.__._J-
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transmit antenna upwind from the acoustic source and the receive antenna
downwind. This technique offers the promise and potential of measuring
horizontal wind velocities of magnitude up to a few tens of meters in the
lower troposphere. Consistent with these theoretical predictions Frankel
et al.,[1977] have utilized this principle of specular reflection to
measure horizontal winds in the lower troposphere.

The analysis in this study was restricted to the lower troposphere ;
however, it can be modified to study this diffraction phenomenon in any
media. The mathematical and physical representations of the acoustic
refractive-index field and atmospheric turbulence, following Tatarskii
[1961, 1971] and Yaglom [1962], are presented in Chapter II. Acoustic®
wave propagation in a turbulent medium is discussed in Chapter III,
and Feynman's diagrammatic approach is used in Chapter IV to derive
measures for the coherency of a vertically propagating acoustic wave.
Results obtained in Chapter IV are applied in Chapter V to develop
asymptotic expressions for the electromagnetic energy scattered from an
acoustic wavetrain perturbed by atmospheric turbulence, mean temperature,
and mean wind-fields. Chapter VI discusses the effect of the mean wind
field on received doppler frequency. Chapter VII summarizes the conclu-

sions of this research.
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Chapter 11

ACOUSTIC REFRACTIVE-INDEX FIELD

Acoustic and electromagnetic waves propagate in a stochastic medium;
however, the naturally induced fluctuations in the acoustic refractive
index are approximately one thousand times greater than those in the
electromagnetic index [Little, 1969]. For this reason, natural fluctua-
tions in the electromagnetic refractive index are ignored in this study.

The acoustic refractive index depends on wind, temperature, and
humidity, and the stochastic variations in these parameters constitute
the phenomenon known as "atmospheric turbulence." In this chapter,
random fields are described; the mathematical analysis follows Tatarskii
[1961, 1971] and Yaglom [1962]. This analysis s then extended to
describe atmospheric turbulence and its effect on acoustic refractive-

index fields in the lower troposphere.

A. Random Fields

Physical quantities such as atmospheric temperature, wind, density,
and pressure are continuously distributed in space and time and, conse-
quently, defy deterministic description. These can be described, how-
ever, in terms of random fields which are random space-time functions.
In this section, random-field theory is described, with emphasis on

meteorological applications.

1. Statistical Representation of Homogeneous Random Fields

Let p(r) be a random field, where r is the space coordinate
and let <:':> denote the mathematical expectation of a random function.
The mean of the random field is <:p(F):>, and its covariance is defined

as 7
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B (ror') = <[p(?) - ] [P - <p*(F->>]> (2.1)

(asterisks denote complex conjugates). A random field is "homogeneous"
if its probability distribution function is invariant under a space

translation; it is "homogeneous in the wide sense" if

<:p(Fi> = constant (2.2a)

and

B (r-r') (2.2b)

Bp(F,F') = Bp(F-F' ,0) D

Henceforth, such fields will be referred to as "homogeneous random
fields."

For an isotropic homogeneous random field, Bp(?) = Bp(r)

where |¥] = r is the magnitude of the vector r. When <p(F)> =0,

p(r) has a Fourier-Stieltjes expansion,

b (F) =f7feiE'F dH (¥) (2.3a)
such that

() =0

CUERIA (1)) = s(e-et)e ()% %

(2.3b)

and ¢ (k) > 0 is the spectral density of the field where

p
B,(F) - f]f efkr 0, () az (2.4)

When the medium is isotropic, ¢p(E) = ¢p(K).

8




The above equation describes globally homogeneous random

fields; however, in the lower troposphere, meteorological variables
are not statistically homogeneous. Homogeneity is violated by large-
scale events and, therefore, it is necessary to consider locally homo-

geneous random fields.

2. Locally Homogeneous Random Fields and Structure Function

A random field is locally homogeneous if the probability
distribution of [p(r) - p(r')] is invariant under a joint space
translation of the points r and r'. Such fields are described by
"structure functions" first introduced by Kolmogorov |1941]. This

function, for a real-valued random field, is defined as

2
D (F.r") =<=[p(?> - Gy - [ - <p(?‘>>]{ > (2.5a)

Physically, Dp(?,?') depends on the scale sizes of the inhomogeneities
in the atmosphere, which are less than |r - r'|.

For a Tocally homogeneous random field,

Dp(F,F') = Dp(?-?' »0) = D_(r-r') (2.5b)

p

If the field is also locally isotropic, then D_(r) = D _(r).
The Fourier-Stieltjes expansion of a locally homogeneous

random field is
o(7) = p(0) + 3,7 +fff 1T - 1] ane) (2.6)

where p(0) 1is a random variable and 'Ep is a random vector. If

<§p> =0 and




p(®) = p(0) +[ff1e™T - 11 @i (2.7a)

such that
(@)D = o (2.7b)
{am@ " ()D = 5(6-%")0, (¥) crdde (2.7¢)
¢p(2) >0 (2.7d)
then

0,(F) = 2_[[[[1 - cos(®T)]e (%) o (2.8)

If this field is also isotropic, then 0p(?) = ¢p(x). The covariance
and structure function of a homogeneous and isotropic random field are

related by
Dp(r) = 2[Bp(0) - Bp(r)] (2.9a)
Because Bp(w) = 0 for a physical random field, Dp(m) = ZBp(O) and
= l o0 -
By(r) = 7 [0,(=) - D (r)] (2.9b)

In this subsection, a three-dimensional spectral expansion of
a Tocally homogeneous random field was made, and a two-dimensional
spectral expansion is described below.

3. Two-Dimensional Fourier-Stieltjes Representation of Locally
Homogeneous Random Fields

The two-dimensional Fourier-Stieltjes expansion of a random

field p(r) in the plane x = constant is

10




p(r) = p(x,0,0) *‘/7[81;&;0‘ J ]] dsp(x,Ea) (2.10a)

where

E& = (KZ,K3) (2.10b)

Yo

(y,2) (2.10¢c)
p(x,0,0) 1is a random function and

sy (xr s (x> = e k2)Fy(xx" o ) o e d

o) Fo Ko (2.10d)

Fp(x,Ea) - Fp(-x,Ea) (2.10e)

As shown by Tatarskii [1971], the two-dimensional spectrum Fp(x,Ea)

and the structure function are related by

Dy (F-7') = 0 (x-x,0,0) = 2 [ 11 = cos &+ (7,527 Flxxt 2 )

(2.10f)

When & = x-x' =0, y-y'=n, and z-z' = ¢, the above equation

becomes

D (0,n,z)

D foU : COS(K2n+n<3§)] Fp(O,K29K3) do<2 d»<3 (2.10q)

The two- and three-dimensional spectral densities, defined in Egs.

(2.10a), (2.10d), (2.10e), and (2.4), respectively, are related by




Fp(l’;,;a) =f<l>p(§)cos(.<] E;)dl(] (2.11a)
and

- _ _]_ =
0 () = gy [ FolEnk,)cos(ny E)de (2.11b)

In addition,
o i W 2 s i ..__ 2 —_
D,(F) = 2//[Fp(0,|<a) FolxeJeos(e ¥ )T &k (2.12)

and
B,(¥) =ffrp(x,za)cos(za-§a)d2 K (2.13)

The two-dimensional Fourier-Stieltjes representation of locally homo-
geneous random fields will be used in Chapters III and IV to describe
the coherency of a propagating acoustic wave.

In the spectral expansion of random fields, it has been
assumed that the medium has constant mean characteristics. In the
lower troposphere, however, the intensity of fluctuations is smoothly

varying, and the above descriptions of random fields must be modified.

4. Medium with Smoothly Varying Mean Characteristics

Following Tatarskii [1971], if the random field p(r) is

smoothly varying, then

D (F,7') = C2 (F“F') Dé°)(F-F') (2.18)




The function Déo)(F-?‘) represents the local variation of fluctuation
intensity and is defined for arguments with magnitudes much smaller than
the largest scale size events. The function Ci((?#?')/z) represents
the smooth variations and is approximately constant when |[r-r'| is much

smaller than the largest scale size event. Tatarskii demonstrated that

cg (FJ'ZF') ¢’()°)(E) . ¢p(F+2F' ,E) (2.15)
and that
cg (F+2F') Fé°)(x-x',2a) - F, (—F%?i,x-x',za) (2.16)

These equations will be used to describe a spherical wave traveling
vertically into the lower atmosphere which is locally homogeneous and

has smoothly varying mean characteristics.

B. Atmospheric Turbulence

The physical phenomenon associated with the deviations of energy
transportation processes in the atmosphere from its deterministic
description is called "atmospheric turbulence." The medium-describing
variables are random functions of four coordinates, space and time.

In this section, the effects of turbulence on the acoustic refractive
index are considered. Let the acoustic refractive-index n(r) be

defined as

n(r) = (P + 0y (r) (2.17)

where <n(F)> ~ 1 and <n](r_-)> = 0. In addition, n](F) is the

fluctuating component of n(r) and is usually much smaller than unity.
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The random medium, the lower part of the troposphere, generally is

not statistically homogeneous; however, the fluctuating acoustic refrac-
tive-index field is locally homogeneous. As discussed in subsection A.2,

such fields can be described in terms of the structure function of n(¥),

defined as
= o iy @ =
D, (rr') = lng(r) - ny(r')}°) r-r s L, (2.18)
In this equation, <in(?):> is approximately constant for |r-r'| S L,

0
where LO is called the "outer scale of turbulence" and is the least

distance between coordinates r and r' for which Bn(?}?‘) = 0.

For points separated spatially by distances greater than L the

0,
covariance function is zero.

The structure function for locally homogeneous isotropic turbulence

was first obtained by Kolmogorov [1941]; according to his theory,

2
Cﬁ 9,5/3 (%‘) r << @
0

2 r2/3
n

G 2 << pri<c L
0 0

where Ci is the "structure parameter" and is a measure of the inten-
sity of fluctuations. The quantity % is called the "inner-scale of
turbulence," and the interval between % and Lo is the inertial

subrange. Energy is injected through some outside mechanism into LO.
According to Kolmogorov's cascade theory of turbulence, this energy is
then successively transferred to smaller scales of turbulence until it

reaches the size of % where the viscous forces dominate and energy

14




is converted into heat. The scales of turbulence between 20 and Lo
are also often referred to as "eddies" [Tatarskii, 1971]. Generally,
20 and L0 are functions of the vertical distance x above the

ground. According to Lawrence and Strohbehn [1970], L0 is on the
order of one to hundreds of meters, depending on the altitude; Gray and
Waterman [1970] show Zo to be on the order of a few millimeters. A

model for the outer scale of turbulence as a function of altitude x is
L (x) = Ax'/2 (2.20a)

where A varies from 1 to 10, with a typical value of 2 [Taylor, 1968].

Because only limited measurements exist for the inner scale of turbulence
[Lawrence and Strohbehn, 1970] and for mathematical simplicity, the func-
tional dependence of the inner scale as a function of altitude is modeled

as the outer scale. Therefore,

(2.20b)

3 5 -4

where A/B = 10° to 10". For example, at x = 1000 m and B = 10 °,
the size of the inner scale of turbulence is 20 =~ 3 mm.

In the lower troposphere, the refractive-index field is locally
homogeneous and has smoothly varying mean characteristics in the vertical
direction x [Brown and Keeler, 1975]. The refractive-index structure

parameter Cs, as defined in Eq. (2.19), is a function of altitude «x.

Consequently,

a
c3(x) = c2 (3L> 1.33 >m, >0 (2.20c)
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2

s < 2
where Cno = Cn(xo). As x increases, Cn(x) decreases and has a

maximum value near the ground. According to Brown and Keeler [1975],

m_ is approximately equal to 1.33,and C2 ranges from 10'6 to
no

a
10'8m'2/3 at x_ = Im.

(o}

C. Refractive-Index Spectrum in the Lower Troposphere

For isotropic homogeneous turbulence in the inertial subrange,

Kolmogorov's two-third structure function law results in the spectrum,

ﬁ 1173 %E,<< Y %1 (2.21a)

(o} 0

Qn(K) = (0.033C

For wave numbers k >> Zﬂ/lo, ¢n(K) is small and the corresponding

range of the structure function given in Eq. (2.19) for r << £ .

0
Tatarskii [1971] used the following form for the spectrum.
_KZ/KZ
oq(k) = 0.0332 113 " T 2w (2.21b)
0

?

where i = 5.92/9,0 o 2n/20.

A disadvantage of the above representation for ®n(K) is that it has a
singularity at « = 0. As a result Tatarskii's spectrum does not
possess an autocovariance function. An alternative representation of
the spectrum, as suggested by Strohbehn [1968] and Lutomirski and Yura

[1971], is

2 -(VQO)Z
0.033Cn e
¢ {x) =

—~ - (2.22)
n (PZ +‘t02)]]/6

o X ; . =y
where by = 2n#b and L0 = Znto. This spectrum is flat for « *'to -
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In the lower troposphere, the turbulent medium generally has a
smoothly varying mean characteristic; therefore, substituting Eqs.

(2.20a), (2.20b) and (2.20c) into Eq. (2.22) yields

[k (x)]°
o.oascﬁ(x) e ]

02+ £.2(x] 70

¢n(X,K) = (2.23)

in the plane, x = constant. This spectral expansion of the acoustic
refractive-index field will be used in subsequent chapters to describe

acoustic-wave propagation in a turbulent atmosphere.




Chapter III

ACOUSTIC-WAVE PROPAGATION IN THE LOWER ATMOSPHERE

% In this chapter, the basic equations for acoustic-wave propagation
are derived. The theory developed by Tatarskii [1961, 1971] is valid
for acoustic wavelengths Aa much smaller than the inner scale of
turbulence Lo By considering dissipation, however, log-amplitude,
phase, and log-amplitude-phase spectra of the scattered acoustic wave
can be obtained over the range of acoustic wavelengths pertinent to this

study. It is shown that Tatarskii's results for optical propagation ’
are good approximations for acoustic waves. Tnese results are discussed
in Section A.

‘ The equations governing acoustic-wave propagation are determined in
Section B. Assuming that variation of the acoustic refractive-index is
much smaller than unity, which is justifiable under typical atmospheric

conditions, the acoustic-wave equation and the Rytov technique developed

in Section B are applied in Chapter IV to describe the coherency of a

spherical acoustic wave propagating vertically into the lTower atmosphere.

A. Sound Propagation in a Dissipative Atmosphere

A first-order perturbation solution of the pressure equation derived [
by Clifford and Brown [1970] forms the basis for computing the log-
amplitude, phase, and log-amplitude phase spectra of the scattered
acoustic wave. The atmosphere is considered to be dissipative, and
tensor notation is used. The ground is the reference level for devia-
tions in other physical parameters such as temperature. A static
atmosphere is defined as one in which ground-level parameters exist

throughout the atmosphere.
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s Fluid Dynamics

In the absence of sound, the atmospheric fluid velocity is
W = <w1.> i, (i=1,2, 3) in the half space x > 0; the con-
stant mean-wind velocity is <w1.> and w: is the fluctuating com-
ponent having zero mean. The acoustic pulse is assumed to be beamed
in the positive x-direction from the origin and, in its presence, fluid
motion is Vi = Wy ¥ u, where u, is the velocity caused by sound
waves. Mass flow is expressed by pvi, where p is the fluid density
and fo is the static fluid densify. The following notation is used:
9; = a/axi, at = 3/3t, and dt = d/dt where dt = at + viai. The

total pressure in the fluid is P = Po + Pys here Po is the constant

static pressure and Ps is the acoustic pressure. In practice

{pa/pol <<1 and p = po(l + &) where |[£| << 1. The shear strain
eij’ fluid stress pij’ and total momentum flux tensor tij are
defined as
=)

i =2 (31'\'5 + 33-"1-) (3.1a)

Pij = (P - Avakvk)aij - 2“veij (3.1b)

tij = Pij i pvivj £3.1¢c)
In these equations, 61j =1 for i=3j and aij =0 for T # Js

and Ay and u, are the volume and shear viscosities, respectively.

For an ideal gas He’ the entropy, is

He ot InP - cp Inp (3.1d)

The specific heats of air at constant volume and pressure are <, and cp

20




respectively, and the Laplace constant y is equal to cp/cv. The
magnitude of the fluid velocity c¢ can be determined from c2 = YZP/p =
YRgcT, where Rgc is the gas constant and T 1is temperature. If <o
and T0 are the reference fluid-velocity magnitude and temperature,
respectively, then c2 = cg(1+T); here 1 is the fractional variation
of temperature from the reference. In addition T = <T> T

<:T'>> =0, and t' contributes to the turbulence fluctuations.
Assuming that the external source terms are zero, the basic equations

of fluid motion, conservation of mass, momentum, and adiabatic propa-

gatior of sound are

8,0+ 3:(oV;) = 0 (3.2a)
3, (V) + dti5 = 0 (3.2b)
dH, = 0 (3.2¢)

Defining v = uvloo, e = 2ve + Xv/p0 -?gdt Ry = Pa/(Ypo),
then, for slowly varying turbulence, na(xi,t) =g 9 H(xi); here W,

is the acoustic angular frequency. Combining the above equations and

Tinearizing, results in the following equation for the acoustic pressure

field
vzn 3 h2H = ﬂg 3, (1. M) + 2ih2 9.9.(w,d.11) (331
Z %3\t s e I '
a 0 a

& : o
9; s the Laplacian operator, ka = ma/co,

h = ka + id, and d = kg nf/(2c0).

In this equation, v2

21




2. First-Order Perturbation Solution of the Pressure Equation

Letting T = Ho + H] then
2 2 ihx
VL =0: =
o " I =05 5 = A (3.4a)
and

V2H + h2H = 2i bi ) (n,II ) (3.4b

] 150 o i -4b)

a

where the fluctuation in the acoustic refractive index " is

n, = - [%~+ ;%f] 3 <:n]:> =0 (3.4c)

Assuming this field to be Tocally homogeneous n and Hl are expanded

in their Fourier-Stieltjes measure as

© fm

- LU .
h(xy, ) = I, (x,0,0) +ff[e el B 1] do(x,x ) (3.5a)

- 00

and

Arl ik -y
n](x,ya) n;(x,0,0) +f][e & e 1] dv(x,?a) (3.5b)

where n](x,ya) real implies

— * =
dv(x,ra) = dv (X,-Ku) (3.5¢)
= * -~
dv(x,-xu) = dv (X’KG) (3.5d)
22




Because |II;| << |H0|, 1n(H/no) = T /T,

where ¥ and S] are the perturbations in the log-amplitude ratio and
phase of the scattered wave, the Fourier Stieltjes measure do(x,c ) of

the complex-phase x + iS; s related to that of H](x,zg) by

dolx.E
W p(x5)

o Hoix,Ydi
Let q = (h2 — Ki)]/z, then

g = (a+ib)Y(ke-i2) + (b+1‘a)Y(s<§-k§)

-K

where Y(-) 1is the Heaviside step function defined by

1 x>0
and
e T T 1/2
ale) = 5 (lal® + 2,02 + 3 (1a)? - 2%,0)V/
1 1 2 1
bk, = 5 (lal? + 2k, )% - 3 (1q)? - 2k,0)'/2
Writing & 2 2
U Y(Kq - ka)
and
V=¥l - )
yields

q = (atib)Y_+ (b+1‘a)Y+

Using the forward-scatter approximation,
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a

(3.7b)

(3.7¢)
(3.7d)

(3.8a)

(3.8b) j




(igy+g,) {x'-x)
kel (3.9)

X
do(x,k,) = ikaf dv(x',x ) e
0

Here, 9 = (ka ~bY, = a¥_) and 9, = (-d + bY + aY+). Note that

a, b, 97> and 92 are functions of Ki.

3. Log-Amplitude, Phase, and Log-Amplitude-Phase Spectra

Assuming that turbulence is homogeneous, the Fourier-Stieltjes
measure of the log-amplitude ratio and phase of the scattered acoustic

wave du(x,?a) and do(x,?a) are [Tatarskii, 1961]

d«v(x,;a) = da(x,zu) + idﬂ(x,VK_’“) (3.10a)
_ o [d0lx,E S+ de (x6-v )]

dafme = = (3.10b)
_ o [de(x,e) - do (x5 )]

do(x,k ) = 53 (3.10c)

The log-amplitude, phase, and log-amplitude-phase spectra of the
acoustic wave can be obtained by computing certain auxiliary spectra.
From Chapter II.A.3, the two-dimensional refractive-index spectrum

' (5= 3
Fn(x -X ,K(l) is

Cavlxt ke )av (x @) > = 6(x S)F (¢ -xt ik )d% d%F (3.10a)
and
i * s o R 7 s 5. -
<d'1)(x,l<a)d¢ (x,K('x)> = G(Ka-K('I)F](X,O,Ku)deade:x (3.11b)
Caolx.Fanx D = 805 )Py, )P 875, (3.116)
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where, from Eq. (3.9),

it , o= [gg(xt-x") + g, (x"+x"-2x)] et
F](XyOyKa) = ka f Fn(x -X ,Ka) e dx X

(3.12a)

2 P e (1g,+g,) (x'+x"-2x) "
-ka ff Fn(x -X ,Ka) e dx'dx (3.12b)
0

FZ(X’O’KQ)

The above equations can be evaluated by noting that Fn(E,Tu)

is even in ¢ and, by using the substitution x'-x" = £, (x'+x")/2 =

9,€
Fr(x,0,¢ ) = —f Folesc ) e 2 cos(gy£) di

K 729, e =y e 4
- S Faer) e coslye) d& (3.13a)

and
F 2 f - (191"'92){
»(x50, —;E;:a—y (&sk ) e dg
kg -2(ig]+gz)x x = (ig]+92)E 13b
+ (79, +3, e f Fa(Esx, ) € de  (3.13b)

0

Because the major contribution in these expressions arise from ¢ <Ll s

the contribution of real terms in the exponent factor of the integrands

is negligible, and
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X s 19]{ X N )
S Fatege Ve = f R (e eos(gn)a (3.142)
¢ 0

Furthermore, significant contribution to F](x,O,:u) and F2(x,O,T )
results from £ < Lo << X, hence the upper limits in the integrals in
Egs. (3.13a) and (3.13b) can be replaced by infinity. As shown in Chap-

ter II.A.3, the three-dimensional refractive-index spectrum, ®n(r), is

2n¢n(\/:2u::2;)= jrn(;,‘;{)eiy‘"{ dr (3.14b)
therefore
Fa(x.0.c ) = 1;5_ cn( :zjq?)[l - e 2q2x] (3.15a)
L e et
FZ(X’O‘“a) = ?7571557 & vyu+g], -1 +e (3.15b)

Because F](x,O,Ea) is real and a function of k% and F2(x,0,?J) is
complex and a function of Ki,
= L ol o TSN o =% = 2—1
<d:,(x,|<a)d0L (X’Ka)> = (S(K%—K(X)FX(X,O,KQ) d Ky d Koy (3.16a)
o 4 oy o st __ 2— 2—l
<dv:(x,t<,l)do (x,rq)> = 8, IF(x,0,6 ) d% dc) (3.16b)
Vo T - g i 27 2’:|
Caalxar Y dolxar )y = 60r # 0 OF (6,056 ) d%, d°, (3.16c)
where
[F1 + Re(FZ)J
F S e — (3.]76)

X 2
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[F, - Re(F,)]

FS = 5 (3.17b)
Im(Fz)
FXs | (3.17¢)
Re(FZ) and Im(Fz) denote the real and imaginary part of the complex

number F2. Here FX(X’O’Ka)’ FS(X,O,Ka), and Fxs(x,O,Ka) are the

i
]
i

:
2
1
1
i

i
g

log-amplitude, phase, and log-amplitude phase spectra of the scattered
acoustic wave, respectively, and FX, Fs’ and FXS can be calculated

from Eqs. (3.15) and (3.17). Limiting forms of FX, FS and FXS

are examined in the following cases.

Case 1: Ky << ka'

. i 2 b .
In this case, Y =0, Y_=1, h=k, a=|[q[, kj-a- Ka/(Zka),

b=~d, 9y = Ki/(Zka), and g, = 0. As a result,

P 2
Fq = 2mkgxo, (k) (3.18a)

K
a

2
-1k x/k
2 [e o 1]

F, = 21 k ¢ (k) (3.18b)
2 a 2 n' o
(1Ka/ka)
and

] » 3 Sin(sz/ka)ﬂ
; F = nkax 1 - ——-2—q——— @n(nc_) (3.19a)
E X («“x/k_) =
<4 L a a |

[ sin(Px/k.) ]
F, o= nkl [1+ ___3;11__41; o (k) (3.19b)
5 (Ku}/ka) J
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k
FXS = Trkix <Ta> [1 - COS(KiX/ka)] (bn((u) (3.19¢)
o

The above expressions are identical to those derived by Tatarskii [1971]

but were obtained via a different approach.

Case 2: Ka = ka.

In this case, Y, +Y_=1, [af = (2, )%, a=b= (k02

a
1/2
9, = ka’ and 9o = (kad) / ; therefore,

2 -(kad)]/zx sinh[(kad)]/zx] 5
Fp = 2nky e (kad)l/z 0, (v2 « ) (3.20a)
[ —(ik?+(kad)]/2)2x J
Fy = (nkl) L8 T =~y (v2 v ) (3.20b)
and
(k)% sinh((k,d)'/%x)  -(k d)!/2xfsin(2k x)
F = ﬂka e o (V2k) 172 -e -
X n o (kad) a
(3.21a)
. —(kad)]/zx o sinh((kad)]/zx) -(kad)]/zx sin(2k_x)
F o= 1k e .0/ % +e —
S a n o (kad)]/z Zka
(3.21b)
nka -(kad)]/ZZX
F/S e 1-e cos(ka2x) ¢n(/? KG) [3.21c)
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Case 3: ¢ >> k_.

o a
In this case Y _=1, ¥ =0, h= ka’ a=|q, gy = ka’ and
g, % & - d Kyt Consequently,
TTkg
F] ol it ¢n(|<a) (3.22a)
a
'ﬂk§
F2 b i ¢n(Ka) (3.22b)
a
and
F = .
- 0 (3.23a)
nkg
L R (2.32b)
a
FXS =0 (3.23c)

> . = 7
N;rma11zed F.» Fg» and FXS,2 that is, f = F /(v xe (x,)),

fo = F/(Tkax® (<)), and f o= F /(mkoxo (k) are plotted vs
normalized wave number ;<OL/(ka/x)]/2

in Fig. 2, which shows the behav-
ior of these normalized spectral functions. It can be observed that
these functions are oscillatory at low wave numbers and that for large
wave numbers, fX and fS are equal but fxs decreases rapidly. The
function fXS is negligibly affected by damping over the entire range
of wave numbers; however, the shape of the fX and fS spectra is
altered slightly.

These Tog-amplitude, phase, and log-amplitude-phase spectra

are largely dependent on wave numbers Ky ka that correspond to
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: ka = 10m1 and x = 1000 m.

turbulent eddies which determine the spectrum of the refractive-index
fluctuations. Eddies with e ka produce evanescent waves. It

can be concluded that, because ¢ (x ) « K&]]/B,
determined by refractive-index fluctuations rather than by absorption in

these spectra are

the medium. As a result Tatarskii's results derived for Aa << 20 are

o . Sl g
good approximations for LO 4 o

In this section plane-wave propagation was assumed; however,
the conclusion that 'the formulas derived on the assumption that
Aa << %0 are good approximations for \a > 20' are unaffected, whether
the type of propagation is plane, Spherical, or beam.

B. Acoustic-Wave Propagation

In this section, the equations governing acoustic-wave propagation

are developed.
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1. Acoustic Time-Harmonic Wave Equation

Let the acoustic pressure impressed on the medium resulting
from an external source be pa(F,t) = ua(?)e-1wat. Because Py is
directly proportional to m which, in turn, is directly proportional
to 1, an equation for ua(F) can be written similar to Eq. (3.3).
In the Tower atmosphere, d << ka and, as a result, the effect of

dissipation is neglected in this analysis. In practice, |t| << 1 and

IW[/co << 1, where |w| is the magnitude of atmospheric fluid velocity.

After preserving the terms linear in T and wi/co, it can be demon-

strated that [Tatarskii, 1971]

vzua(F) + kgnz(F)ua(?)= 0 X >0 (3.24)

where

n?(r) = {nf(P) + 2n(7)s (3.25a)

(my =1 - {rp=2 gw—iﬁ (3.25b)

0

=l 1
n](r) == “‘;"- - -'C—O'<W1-2.i - <w1.21.>> (3.25¢)

<n](?)> =0 (3.254d)

by = unit vector tangent to the ray

The dummy parameter & measures the smallness of n](F),
which is the variation of the acoustic refractive-index from its average
value; generally, <:n(?):> is approximately unity and ln](F)l < 1.
The above time-harmonic scalar wave equation describes the acoustic-
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wave propagation in the half space Vs = {(x,§A) g 0 <o e,
0 < lygl < o)

When n(r) =1, Eq. (3.24) reduces to the Helmholtz wave equa-
tion. Tatarskii [1971] demonstrated that the structure parameters for

the acoustic refractive index, atmospheric wind, and atmospheric tempera-

2 2 2 3
ture (Cn, Cw’ and CT) are related as
e C,
C. =3+ (3.25€)
47 (o
0 0

This equation also reveals the relationship between the structure param-
eters of the acoustic refractive index, temperature, and wind velocity.
Eqs. (3.24) and (3.25) are applied in the next section and in Chapter IV
to compute the first and second statistical moments of a spherical

acoustic-wave propagating vertically into the atmosphere.

2. Rytov's Technique

Using Rytov's transformation, uy, T exp v [Barabanenkov et al,

1971]. The perturbation in complex phase-amplitude, vy, 1is computed as

ua(F) = Aa(F) exp[iS(r)] (3.26a)
w(r) = 1In Aa(?) + iS(r) (3.26b)

When this transformation is applied to the scalar-wave equation, the

Ricatti equation in ¢

w2 + ()2 + k%% = 0 (3.27)
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is obtained and y(r) is then expanded in power series of a dimension-

less parameter & as

- 2‘6 §J b5(7) (3.28)
J:

Using Eqs. (3.25a), (3.27) and (3.28) and equating to zero terms of

like powers in § result in

2
vzwo v vy vy = - ka<"2> (3.29a)
2 " 2
iy # 2vw0 vy, = 2ka ] (3.29b)

Note that solving Eq. (3.29a) is equivalent to solving

Yo * kg <n2>uao I

which is Eq. (3.24) with &6 = 0, and u

i
o

a0 - €XP ¥,  Equation (3.29b)

can be solved via the technique outlined in Schmeltzer [1967]. Assum-

ing that <n(?)>

1,

- (r') e i
u)](r) = -2k f n (r)——(—)—— ao(r‘,r") d° r' (3.30)
ik [r-r'|
..-_| o e a
where Gao(r,r ) = - _;;]E:$;]- (3.31)

If uao(F) = Aao(F) exp[iSO(F)], (v - wo) measures the fluctuation in

logarithmic-amplitude and phase of the scattered sound wave.
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+ (S - SO) =y + iS] (3.32)
ao
where x and S] are the perturbations in logarithmic amplitude and
phase, respectively. Equations (3.30) and (3.31) will be used to

determine the coherency of spherical acoustic-wave propagation in a

turbulent medium.
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Chapter 1V

COHERENCY DESCRIPTION OF ACOUSTIC-WAVE PROPAGATION

The degree of interaction between electromagnetic and acoustic waves
depends on the coherency of the latter. As a result, coherency of spher-
ical acoustic-wave propagation in an inhomogeneous atmosphere is examined
in this chapter via a perturbation theoretic approach.

A diagrammatic technique, introduced by Feynman [1948], serves as
a basis for the analysis and is used to perform a selective summation
of the perturbation series. Its basic philosophy is similar to that of
the method of smoothing which, in turn, is related to the Bogoliubov-
Krylov-Mitropolski method for solving nonlinear differential equations
[Bogoliubov and Mitropolski, 1961]. These techniques are reviewed by
Frisch [1968] and Nayfeh [1973].

The coherency of an acoustic pulse propagating in a turbulent
medium is a measure of random fluctuations in and between successive
wavefronts and is determined by atmospheric parameters. To simplify
the analysis, it will be assumed that the mean of the acoustic
refractive index <n(?)> is unity and that the varying part of
this refractive-index field n](?) has a gaussian probability density
function [Fante, 1975]. The acoustic source is modeled as a delta
measure at the origin of the coordinate system. Source parameters are

restricted to be deterministic.

A. First Moment of Acoustic-Wave Propagation

The first moment of a spherical acoustic wave propagating in a

turbulent atmosphere is derived in this section and is then used to
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estimate the coherence length of the wave. This length is defined as
1

the altitude over which the mean acoustic field is attenuated by e~
resulting from complex-phase interference. Given the notation

r = (x,yg), the coherence length x_ is

1

CB,(x¥ 300> = G, (x oy :0)e (4.1)

where Ga(x,ya;o) is Green's function for the spherical acoustic wave
propagating in the turbulent medium. To derive <:Ga(x,3ix;0):>,
Dyson's equation [Frisch, 1968] will be solved by means of Feynman's

diagrammatic technique.

1. Dyson's Equation

Operator notation is used to simplify the following presenta-
tion. Equation (3.24) plus the source function determine the amplitude

¢/ the pressure wave as

fGa = SaC (4.2)

Here, Sac is assumed to be a delta measure at the origin of the coor-

dinate svstem and £ = (\72 + kgnz) is the linear stochastic differential

operator. In the above equation

]
"

{epre &) =0 (4.3a)
y =K pee  Kad=o0 (4.3b)

[
1]

where ¢' and Gé are the varying components of £ and Ga’ Using

Eqs. (3.24), (3.25a), (4.2), and (4.3),
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(o= 08+ KD (4.4a)
W
e = 2ka " (4.4b)

Therefore, from Eqs. (4.2) and (4.3a)

(e * 28, =5 (4.4c)

Ga = Gaosac - Gaog Ga (4.4d)

where Gao is the inverse operator of <:£:>. It is nontrivial to

solve the above equation for Ga; however, after formal iteration,

I T S B
G, z: { Gaog e Sac L
J=0
This is called the Liouville-Neumann series and, because the random
medium is semiinfinite, this series diverges with finite probability.
Because <Ga> is to be computed, a relationship governing e >,

called the Dyson equation, can be obtained by the method of smouching;

therefore, averaging Eq. (4.2) yields
(D) + e =5, (5.6)

Subtracting this result from Eq. (4.2) yields

{26+ (1P, ) 2 6 528 > (4.7)

therefore,

6, = -G (1;-P, )¢" 6} - G @ e, (4.8)
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where Ii is the identity operator and Pav denotes the operation of

ensemble averaging. By iteration, Gé can be determined as
' = 5 ! 1 J N oL
G = - jg{)) {-Gao(li—PaV)g e, e (6, (4.9)

Substituting for Gé in Eq. (4.6) results in

96, =5, (4.10a)
where 9 = {2>-m (4.10b)
and m = i < 8 {—G;O(I].-Pav)s"}j G;O e (4.10c)

j=0

Here Ml 1is called the mass operator and 9, the Dyson operator

[Frisch, 1968]. Equations (4.10a) and (4.10b) yield
<Ga>= Ga0%ac * G'Iaom<Ga> Gl

The success of Dyson's method depends on the fact that <:Ga:> is
obtained by iterating from Eq. (4.11) after approximating M instead of
iterating Ga as in the Liouville-Neumann series and then averaging.
Because the expression for m is complicated, use of Feynman's dia-

grammatic technique in the following section is justified.

2. Series Solution of the Dyson Equation Using Feynman's Diagrams

Feynman's diagrammatic procedure is used to obtain a series
solution of the Dyson equation. In this technique, the source Sac is

the Dirac-delta measure §(r) . Noting that G;od(?'- r') is equal to

G, (r,r'), the integral representation of Eq. (4.2) then becomes
38
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TR

6,(r>0) = G (¥,0) - 2k§fsao(F,F])n](F])Ga(F],o) ¢°F,  (4.12)

Formal iteration of this equation results in the expansion of Eq. (4.5)

S - zf = s — - K
G,(r,0) = G, (r,0) - 2k_ J G, (rsry)n (ry)6, (r;,0) d7ry

+ 2k [/Gao (r, r r )G (FZ,F])

P

- - 3
. n](r])Gao(rl,O) d ry dr,

p PR (4.13)

The above series can be represented graphically with the following con-

ventions:

Cy -- Gao(r],rz) is denoted by a short line whose end

points are F] and ?é:

GaO(r] ,I"'2) e
o

=
N

N -

C2 -- The random operator -¢' = -2k§ni(F) is designated
K

by a dot placed on the diagram at r, sometimes

called a vertex:

2 ==
-2k_n (Y‘) Te P
a'l -

C3 -- A dashed line joins the vertices for which

4k <n n (r > is evaluated:
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Al

4%y (rm (7)) e - - - -2

A A
For example,
Bl (206 (-8 6L, Da(r-r) -
('Zkg)sz Bao(To2)630 (72T )65 (o1

- oy (en (7)) &y a7,

" (4.14)

The series in Eqs. (4.5) and (4.13) can be expanded diagrammatically as

Ga(Fso) = * A
r 0

5 |
il
o

L gus (4.15a)

sSle

=3
no
=

s|e

One of the most significant attributes of this method is its systematic
and explicit account of multiple scattering. For example, the third
term represents a wave excited at the origin; it travels freely to and
scatters at the vertex F], travels freely to and scatters at the

vertex Fé, then travels freely to r. Averaging Eq. (4.15a) and
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because n](?) is a centered gaussian random field, the following

diagrammatic series is obtained [Tatarskii, 1971]:

<G (?,0)> Al + - N
a ——————— —————
+= "-.‘x A'-‘\L + . = N |
g R 5 ; ;
P eI e = |
Pid PR \\ eLx |
b el e (4.15b) |

This series is selectively summed by substituting the zeroth term in
Eq. (4.10c) in Eq. (4.11), and (4.11) then simplifies to the following

diagrammatic equation in <Ga>:

= + 3 v (4.16)
On iteration,
{6 (r,0)) ~ - L
& _':’ s ;-’ s
SN O TGl
£y a (4.17)

Using these equations, the coherence length of acoustic-wave propagation

is computed in the next section, where the <cndition of forward scatter,
Aa << Lo(x), exists (because the correlation length of the refractive-

index fluctuations is on the order of Lo(x)).

3. Coherence Length of Propagation

An analytic representation of Eq. (4.16) is

41




<Ga(F’O)> s Gao(F’o) % ('Zkg)szGao(F’FZ)Gao(FZ’Fl)
vV V

- g (rdng (7)) > 6, (7500 )

S d%

i

(4.18)

Using the principle of stationary phase [Popoulis, 1968] and the mathe-

matics in Appendix B, this equation can be solved for <:Ga(F,O):>:

by e e
(gﬁﬁﬁ>=%&ime2<wﬂxx)l> (4.19)

Here, the unperturbed term Gao(?,o) is damped by the factor
exp[- <l¢1(x,37a)|2>/2] in a turbulent medium because of complex-

phase interference. From Eqs. (4.1), (4.19), and (A.20), the coherence

length is
6/(11-6 ma)
54.8 (1.833 - ma)
Xe © 2 2 ,5/3 _ma (4.20)
C.. k. A X
no a 0

At altitudes of the acoustic pulse x «- Xes the effect of turbulence
is negligible. From Fig. 3, it can be concluded that the coherence
length varies inversely with frequency and the strerigth of turbulence.

The incoherence lengtn of propagation v; isdefined as

6/(11-6m,)
54.8(1.833 - m_)
5 - . (4.21)
Vo lc? 2 gh/3
no a 0
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Fig. 3. COHERENCE LENGTH VS
ACOUSTIC FREQUENCY.

2 _ 19°6.-2/3
Cno =10 “m s X 1 m,

¢ = 340 m/sec, and A = 2.

The incoherence length of propagation is the altitude over which the
transverse coherence length of the field is of the order of the inner
scale of turbulence. For Xy <X, the acoustic wave is incoherent

as a result of random fluctuations in the atmosphere. This incoherence
length of propagation is typically three to five orders of magnitude

larger than the coherence length.

B. Second Moment of Acoustic-Wave Propagation

The coherence function M(¥',r") of an acoustic wave propagating

in a turbulent atmosphere is defined by

{6, (v ,O)G;(F" 0)) = G, (v ,O)G;o(F“ L0)M(r',r") (4.22)
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The quantity <iGa(F‘,O)G;(?",0):> is the second statistical moment of
Green's function. This function has been widely used when a measure

of coherence between two points in the same wavefront is required
[Tatarskii, 1971; Prokhorov et al., 1975; Fante, 1975]; however, the
definition and requirements in this investigation are more general
because r' and r" 1lie in the acoustic pulse. To compute M(r',r"),
the Bethe-Salpeter equation [Frisch, 1968] is solved using Feynman's

diagrammatic technique.

1. Bethe-Salpeter Equation

The coherence function is a measure of fluctuations between
two points (not necessarily in the same plane). To compute M(r',r"),
the second statistical moment of the acoustic wave must be determined.
This second moment, the ensemble average of the double Green's func-

tion Ga(F',O)G:(F“,o). This double Green's function is defined as
= i AN &= | = AN
Ga(r ,0) ® Ga(r ,0) = Ga(r ,O)Ga(r ,0) (4.23)

that is, the tensor product of Green's function and its complex conju-

gate. In terms of "double diagrams" and Eq. (4.15a),




Each double diagram is the tensor product of the operator representing
the upper 1line and the complex conjugate of the operator representing

the lower line. For example,

DESER
af e RO SR 2k2 ffs (rary)ng ()G, ()
—__.—,-—
€ €1 €0
* — — d3 d
" 6 o(E:E In (51)Gao(€1 £) d'ry d7g
(4.25)
*_ .
The mean double Green's function <:G ',0) ® Ga(r“,o):> is
expressed in the following diagrammatic series:
—» e
{6 (7,006, (r,0) ) = e R +
A(r-0)6,(r", : i
(4.26)
where
— t—_;r )
r ir 2 ./'Jf - — T = =
' o - (-
. ] ( Zka) Gao(r,r1)Gao(r],ro)<:n](r])n](5]):>
e o L
& - &4 &
ko—— K= =3 3
Gao(g,g])Gao(g],go)d r]d 3 (4.27)

*
In operator notation, <Ga @ Ga> can be computed from the following

Bethe-Salpeter equation [Frisch, 1968]:

Gy @ 6 = (600D + (8 DG, @ 6> 2w

e Gy




where I is the "intensity operator" because it is used in calculating
the mean intensity of the propagating wave. Under a weak forward-
scattering condition, the diagrammatic representation of this equation

is

s, ® 6. - +

G, ® 6, (4.29)

]

F *
The top line denotes <Ga> and the bottom one designates <Ga>'

This diagrammatic equation can be solved by iteration as follows:

* * *
* ' 1 |
<Ga ® Ga> = + E + : :
- —- 'S é
f* i -
1 [
s o : i (4.30)

which is the "ladder" approximation of the solution to the Bethe-

Salpeter equation [Tatarskii, 1971] . The Eq.(4.29) can be rewritten as
e ®
(6,(F",006,(¥",0) )
= <6,(7.,0) > <6, (+,0))

+ (-2k§)2 ff (s, (v B <G;(F",?2)><n](F])n](?2)>
V. Vv

- 6,(r.006,(r,,0)) ¢*F ¢, (4.31)

Normalizing this equation by Gao(F“,O)G;O(F",O) and using Eq. (4.22),
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M(—Y:. ’Fu )

5yl 00 B 0

o *
Gao(r'»0)G,,(r",0)

(-2k%)? ff <G R GERD {ny (7 (7))

(r' O)G (r",0)

-Gao(F],o) o (T OM(F T )d3F]d3F2 (4.32)

which, used to solve for M(r'.r") through Eqs. (4.19), (A.16),
(A.17), and (A.20) becomes

M(F',7") = exp {- % [<|w1(7')|2> + <|w1(-r")|2>
- 2y, (?-)q,’]*(?")>]} (4.33a)
Here, r' = (x',y.), " = (x",y3), and

[ @E N2> + 12> -2 o ] -

2|< _[1-J D)l e, & (n,x_ )d< d ‘(433b)
- % < n(n, o) dKy dn g
00
where
x = (x" + x")/2. and Yam © ly& -y

al'

&5 Coherence Function

The coherence function is a measure of the sphericity of the

acoustic wavefronts propagating vertically into the turbulent atmosphere;
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it also determines the coherency in and between the wavefronts of an

acoustic pulse. This function is examined in the following cases.

Case 1: x << Xe

At these altitudes, the acoustic wavefronts are almost coher-

ent,

MOr',rt) = 1 (4.34)

and the effect of turbulence is negligible.

Case 2: xC << x << X;

In this case, Eq. (4.33a) is evaluated using the following

relation [Abramowitz and Stegun, 1968; Formula 11.4.18]:

f [1-9,(t)1 ™3 gt = 1.118 (4.35)
0

Based on Egs. (2.23) and (4.33), the coherence function is

M(r',r") = exp [-3.73

(11/6 - m,) ({y(,m )5/3 (x )(”/G'ma) (4.36)

(8/3 - my) ¥ (X) X,

which holds for 1b(x) << y <<'t0(x). As can be seen in Fig. 4, the
am

and y /M (x) increase, and

coherence function decreases as x/xC i o

it increases as m, increases.
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Case 3: Ky =5 X

At these altitudes, A %b(x); as a result Ky is

integrated from 0 to -%8](n), and J_( n/x) is expanded in a

K
ayam

small-argument approximation as 1 - (Kayumn/x)2/4 in the right-hand
side of Eq. (4.33b). Using this expansion and Eqs. (2.23), (4.21), and

(4.33) the coherence function is

M(r',r") = exp | -2.5 (%_—::::) (%Of%) (;") (4.37)

C.  Summary

Feynman's diagrammatic technique has been used to describe mathe-
matically the coherency of spherical acoustic waves traveling vertically
into the turbulent atmosphere. If a RASS is operating at an acoustic
frequency of fa = 1 kHz, [Brown and Keeler, 1975; Taylor, 1968]

C 2 . 3pb m—2/3’

e 10 Ry = 1 m, cO = 340 m/sec, A =2, and m, = 1.38,

the coherence length can be computed via Eq. (4.20) to obtain

R 6.4 x 108 m. This result implies that the coherency of an
acoustic wave is not affected by turbulence at x << Xe when the
acoustic frequencies are below a few kilocycles under typical atmos-

pheric conditions.
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Chapter V

SCATTERING OF ELECTROMAGNETIC WAVES FROM AN ACOUSTIC PULSE

This chapter describes the scattering of electromagnetic waves from
an acoustic pulse traveling vertically into the lower atmosphere.
Marshall [1972] studied this phenomenon in a static atmosphere (without
turbulence or winds). The effects of turbulence, mean wind, and tempera-
ture parameters are included to obtain a more realistic expression for
the electromagnetic power reflected from an acoustic pulse. The funda-
mentals of the physical phenomenon are discussed in Section A, and an
expression for the backscattered electromagnetic energy for a monostatic
RASS is derived. In Sections B and C, the effects of turbulence and
mean atmospheric parameters on the backscattered energy are considered,

and Section D summarizes the results.

A. Interaction between Electromagnetic and Acoustic Waves

A physical basis for the scattering of electromagnetic energy from

an acoustic pulse is established in this section.

1. Maxwell's Equations

The electromagnetic refractive index ne(F) of the medium is :

defined by 3

nir) =1+ n_.0r] (5.1)

where nel(F) is its varying part; typically, Ine]( )| << 1. The vari-

ations in ne(F) can be caused by naturally occurring phenomena in the

atmosphere or they may be man-made.
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Assuming that the lower atmosphere is nonionized and that its

permeability Mo is a constant, the electromagnetic refractive index is

ne(F) = \/Eézl (5.2)
0
where
e(r) = e + de(r) (5.3)

Here, the free-space permittivity € is a constant, and Ae(r) is the

deviation of permittivity e(r) of the medium from € . Given a
R
sinusoidal time-varying electric field E(r)e €

-iw t

and a magnetic field

H(r)e , Maxwell's equations can be expressed (using vector notation)
as
foﬁ)=hw%mF) {(5.4a)
v x H(F) = -ie(r)w,E(r) (5.4b)
V-Hr) =0 (5.4¢)
v [e(mE(r)] =0 (5.4d)
where
= 92
s L"fe (5.5)

is the angular electromagnetic frequency and fe is the electromagnetic

frequency. The above equations can be combined as

VZE(F) + mguoe(?)E(F) + V[E(r) - v(Ine(r))] = 0 (5.6a) :

The gradient term can be neglected if AE(F)/EO is small over one

wavelength Ae [Bremmer, 1964]. This is a valid simplification because
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this term, which contributes to the depolarization of the electromag-
netic wave, is negligible under the atmospheric conditions [Strohbehn,
1971] pertinent to this study. Neglecting the gradient and applying
Eq. (5.3),

VEE(T) + i e B = ~ulugbe(FIE(T) (5.6b)

. iy 2 d. 2 g
Using ke = WeHyEp? where ke = ZW/Ae is the electromagnetic wave-

number, the above equation simplifies to

€

v2E(r) + kgf(?) = -kg (AE r ) E(r) (5.7)
0

which can be solved in a perturbation series because !AG(?)/eol gl

2 Perturbation of Permittivity of Air by a Propagating Sound Wave

Neglecting the effect of water vapor [Bean and Dutton, 1968],

the electromagnetic refractive index above 30 MHz can be approximated by

(n. - 1) = L= (5.8)

where pressure P is in Nw/m2, temperature T dis in °K, and Kre
is a constant equal to 77.7 x 10-8 °K/Nw/m2. Equations (5.2) and

(5.3) yield

(n. - 1) = ——2 (5.9)

therefore,
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s e (5.10)

Because the propagation of a sound wave is an adiabatic process in the

lower troposphere,
*IS—-‘-—Y*— (5.”)

where y is the ratio of specific heats ot air and Vd is its volume
density. Using the above equation and the perfect gas equation

PVd/T = constant.

ar (v -1\ e

z (Y )P (5.12) |
then I

de _ Kre dp (5.13)

€y Y T

which, in incremental notation, is

Ae _ re AP (
== —= = 5.14)
€ Y T
Defining ;
R Py ® Py (5.15a) !

where Po is the static atmospheric pressure and Pa is the external

acoustic pressure, then

AP = p, (5.15b) L
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The external source is assumed to have a sinusoidal amplitude variation
with a maximum value of - S Lf Pa is the radiated acoustic
power (in watts), ga(e) is the gain function of the acoustic source,

and Gas is the maximum value of ga(e), then

(8) (5.16a)

fa(O) =1 (5.16b)

According to Landau and Lifshitz [1959], the intensity I(r) at

distance r s

2

p
I(r) = amax .

- C
20o 0

Paga(e)

5 )
4nr2

Consequently combining Eqs. (5.15) and (5.17) yield

2
2 2K” p ¢C P g
= re“o o a“a
( ) - ( 29 )( , ) (5.18)
0 ™ T r

max

m|(>
™

For the Tollowing typical values in the lower troposphere,

2 =8 5 2 _ 3 =
Ky il D, K/Nw/m~, %o .23 Kg/m™, % 330 m/sec,
T = 278 °ky, and v = 1.4,

2K .. pC
re’o o) _ 14-15
( 2—?——) =0 (5.19)

and
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(AE) -l (5.20)
€o r
max
where, assuming g_(8) = G over the effective scattering volume V__,
a as as
2 _ . ~15
K] =10 Pa Gas (5.21)

3. Born Approximation

Equation (5.7) can be written as

VE(r) + KZE(F) = k% (éf;('—l) E(T) (5.22)
0
for each cartesian component of E(F), where Ge is a dimensionless
dummy parameter denoting a measure of deviation of relative permittivity
from unity. The electric-field component E(r) can be expanded in

a power series of Ge as
0 .
E(r) = 2 & E.(7) (5.23)
R

which, when substituting into Eq. (5.22) and equating terms of the same

order in Ge, results in

2 y
VE, + k3E, = O (5.24)
2 2 2 (Ae(r i

VEy P B (-eo ) £, = 0 (5.25)
2 2 2 (ae(r "

VE, * EE, * K ( €o ) E 4 =0 (5.26)




Ly s

In the above set of equations, E] produces only single-scattering and
higher order terms yield multiple-scattering effects; mth order

scattering is a result of Ej’ m>j>0. Asufficient condition for

SEPVOPRREIERNS- SF PRSI

the validity of the above series is

A—E} k2 d2 <
€ e ScCv

N —
o

max

where dSCV is the diameter of the scattering volume. If
1 |Aeg] 2 2 '
2 'eol ke dsey << 1
max
then,
E(r) = EO(F) + E](F) (5.27)

This is known as the Born approximation [Bremmer, 1964]. If Pt is

the transmitted electromagnetic power (in watts), Gt is the maximum

gain of the electromagnetic transmitter, and Ny is the free-space

impedance, then

N i(ker‘-wet)
Eo(r) = Eoo(r) e (5.28)
where
2 -
Eoo(r) Y Pth e
2n ik 2 (5.29)
0 4rr

Using Green's function theory and imposing the radiation condition [Yeh
and Liu, 1972] the scattered field at the receiver for monostatic

geometry of the RASS is
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kg / 1ker' ko
£, (0) = 77 e lAe(r') ¢ (v') a3 (5.30)
v r € 0
as

where VaS is the scattering volume.

4. Scattering Geometry

The electromagnetic signal scattered from the acoustic pulse

traveling in a turbulent atmosphere is computed for the RASS mono- |

static geometry illustrated in Fig. 5. The half-power beamwidths of

~

the acoustic source and the electromagnetic antenna are 6, and I

Fig. 5. RASS MONOSTATIC GEOMETRY.
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respectively, and 6 is the minimum of each. The effective scattering

volume Vas is limited by two spheres of radii R] and R, centered

2
at the origin and by a cone of vertical angle 6. If i is the

number of cycles in the acoustic pulse, then

- R2 =n__ A (5.31)

The maximum gains of the electromagnetic transmitting and

receiving antennas are Gr and Gt’ respectively. These antenna

patterns are

g9.(8) = G, fi(e) (5.32a)
f ey = . (5.32b)
9,(6) = Gy fi(e) (5.32¢)
f (0) =1 (5.32d)

Here gr(e), gt(e), and the acoustic source pattern ga(e) defined in

Egs. (5.16) are considered to be substantially constant over V as

as’
is EOO(F) from Eq. (5.29). These simplifying assumptions do not
significantly affect the calculations because the variation in these :
patterns and amplitude over Vas is small. If the effective area of

the receiving antenna is Ar and the received power is Pr,

A= <= 8 (5.33a)

and




<515
2n

r
=i (5.33b)

Ar 0

The diameter of the scattering volume is
dscv e { R, nac)‘a} (5.34)

where R = x is the height of the acoustic pulse. As a result, it can
be noted from the previous subsection that the condition for the validity

of the Born approximation is

2_n2 . e

K]kexe /2 << 1 if dSCV = X0
z9 7 . X

Klkenacxa/(zx) ] Wy = Macka

These conditions are typically valid in the lower troposphere.

B. Received Power in the Presence of Turbulence

In computing the scattered electromagnetic energy from an acoustic
pulse in a turbulent atmosphere, the mean atmospheric parameters are
assumed to be absent. The effect of these mean parameters, however, is
considered in the next section. From the results obtained in Egs.
(3.32) and (5.20)

Likar+w(F)-wo(F)]}

— K
actl . 1} Re {e

(5.35)
€o

Based on this equation plus (4.22), (4.33a), (5.28), and (5.30) and

imposing the Bragg condition 2ke = ka’
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(r'ren)?

<|El|2>=(KT)(4_§) f f—(L—L)-E (FE (F)aFd®F  (5.36)
V

where r' = (x',?&) and v = (x",}&). Making the transformation of

variables x = (x'+x")/2, Berir

= (U _gn o = s
(Yg¥g)» and yo, = (¥g+yg)/2,
and neglecting amplitude variations which are less significant com-

pared to phase variations,

2 k2 2 E2
<|E | > ( )(Mr) (nac>‘<‘=1)2 73’? (x, 8/2, yam) {5-37}
where
I(x, /2, y ) = ffM(x, Vo) dz}"o"dzya (5.38)
Dl Dll

In the above equation D' and D" are circles of radii dé = x' 6/2
and d; = x" 8/2, respectively; and I(x,@/z,xlm) is evaluated in
Appendix C. Using Egs. (5.21), (5.29), (5.33), and (5.37), the received

power Pr is

n2
P.P.GG.G
P - Mac'a"t 2 t-as I(x, 6/2, Y, ) 10-15
256 X

(5.39)

Defining da = X §/2, the received power Pr is evaluated for the

following three cases.




case 1: x << X

(o
At this altitude, the acoustic wavefronts are almost fully coher-

ent; therefore, from Eqs. (4.34), (5.39), and (C.9)
2\2
(nda)
~ 272
[n(l‘zﬁ) ] (5.40)

i

I(Xa é/Za .yam)

u

and

g 2 572127272

o T N, cPaP B8 6,s[(6/2)°/2] (10-15)

= 2 64

X
2 2
n” PP.GG,G 87212
2 -1
§ acazzr‘tas [(Q/Z) }(1.54“0 %) (5.41)

This equation is identical to the one derived by Marshall [1972] who
assumed a static environment. At these altitudes, his derivations are

valid even in the presence of atmospheric turbulence.

Case 2: I X% << %s
2 X < X;

In this range, Aa(x, 8/2, yam) can be approximated by ndg in

the integrand of Eq. (C.9); then,

2d
a

I(x, 0/2, y ) = (2n)(nd§)f L [C SN 7 (5.42)
0

Because, generally, 2da >> {O(x), the upper 1imit of this integral

can be extended to infinity. Based on Eq. (4.36),

62




o \6/5
I(x, 6/2, xum) = (Zw)(wdg)(0-113) (-———-—-—Jg) ‘fz(x)

11/6 - m. 0
x_\(11/6-m_)(6/5)
-(-ii) i (5.43)
and
A 2,2
Pixs 8/2, ¥y ) = (md9) (5.44)
am’ a
As a result,
I(x, 8/2, y_ ) 8/3 - m \/%e (x)\2
- & =10.2¢28 Tj7q;1;7ﬁi 21
I(X, 6/2: .Yam) a a
max
> (11-6ma)/5
A (5.45)
If Prmax given by Eq. (5.41) is the maximum received power in the

absence of turbulence, then from Eqs. (5.39) and (5.45), it follows that

P L b2,y
Prmax I(x, 6/2, yam)
max
8/3 - ma 6/5 {0<x) 2
= 0.226 ]]/6 2 ma da
% (]1-6ma)/5
: jg (5.46)

from which it can be observed (Fig. 6) that the received power decreases

as altitude increases.
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Case 3: Xj << X

At these altitudes, it can be shown by using Eqs. (4.37), (5.39),
(C.8) and (C.9) that

P 17 - 6m £O(X) - X (11/6-ma)
R ] £ e o | £ e
rmax a d

It can be concluded from the results obtained for the three cases

considered above that, in the lower troposphere (x < 10 km), the
effect of turbulence on the received RF power in a RASS is negligible
at acoustic frequencies less than a few kilohertz. At frequencies

greater than = 10 kHz, however, turbulence must be considered when

evaluating the RASS performance when the altitude of the acoustic pulse

is greater than about 1 km.
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€. Interaction between Electromagnetic and Acoustic Waves in the
Presence of Mean Atmospheric Parameters

In addition to the fluctuating parameters, the atmosphere is

characterized by such mean parameters as temperature and winds. In

the lower atmosphere, a linear temperature profile can be observed at
heights up to the first 10 km; its temperature gradient, typically

-6.5 °K/km [Yeh and Liu, 1972], tends to disperse the acoustic wave
train. The atmosphere is also characterized by vertical winds that
alter the effective velocity of sound and by horizontal winds that shift
the focus of electromagnetic energy from its origin. In the analysis to
follow, these winds are assumed to be constant, and each parameter is

studied separately.

1. Received Power in an Atmosphere with a Linear Temperature
Profile

The Tinear temperature profile in the lower atmosphere can

be described as

T(r) =T' + agr (5.48)

where ag is the temperature gradient, T' s the temperature at

ground, and T(r) 1is the temperature at r. The beamwidth of the 1
acoustic source is assumed to be sufficiently narrow so that the

temperature variations across the acoustic wavefront can be neglected.

This is a valid assumption for acoustic-wave propagation in the tropo-

sphere [Yeh and Liu, 1972] and for beamwidths less than 1 radian. The

endpoint of the vector r falls within the half-power beamwidth of the

acoustic source. Because ’agrl << T' at altitudes below a few
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kilometers, T' will be replaced by the average temperature T0 in the
ensuing calculations.
From Tatarskii [1971] and Eqs. (3.24), (3.25) and (5.48), the

phase ST(F) of the acoustic wave is given by

2

ST(r) = kar -nr (5.49a)
where
a ka
n = —f%;— (5.49b)

In the geometry in Fig. 5 (page 58), the strength of the RASS received

signal is proportional to the magnitude of F, where

R

1 -i
F =f cos ST(r) e
L

(2k _r-a)
& dr (5.50)

and o 1is a constant introduced to simplify the calculations of |F|2.

In the absence of temperature gradients,

2
n. A
IF|? =(——'—a§ a) (5.51)

For a linear temperature profile in the lTower atmosphere, F calculated

in Appendix D is

Fe gL ;cos(nRim)[Cf(Am) - C(B )]

+ Sin(nRi+a)[Sf(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>